Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.584
Filter
1.
Article in English | MEDLINE | ID: mdl-38573743

ABSTRACT

Facultatively anaerobic bacterial strains were isolated from samples of a methanogenic reactor and, based on 16S rRNA gene sequences, found to be affiliated with the family Propionibacteriaceae in the phylum Actinomycetota. Four strains with almost-identical 16S rRNA gene sequences were comprehensively characterized. The most closely related species to the strains was Brooklawnia cerclae BL-34T (96.4 % sequence similarity). Although most of the phenotypic characteristics of the four strains were identical, distinct differences in some cellular and physiological properties were also detected. Cells of the strains were Gram-stain-positive, non-spore-forming, pleomorphic rods. The strains utilized carbohydrates and organic acids. The strains produced acetate, propionate and lactate from glucose, but the molar ratios of the products were variable depending on the strains. The strains grew at 10-40 °C (optimum at 35 °C) and pH 5.3-8.8 (optimum at pH 6.8-7.5.) The major cellular fatty acids of the strains were anteiso-C15 : 0, C15 : 0 and C15 : 0 dimethylacetal (as a summed feature). The major respiratory quinone was menaquinone MK-9(H4) and the diagnostic diamino acid in the peptidoglycan was meso-diaminopimelic acid. The genome size of the type strain (SH051T) was 3.21 Mb and the genome DNA G+C content was 65.7 mol%. Genes responsible for propionate production through the Wood-Werkman pathway were detected in the genome of strain SH051T. Based on the results of phylogenetic, genomic and phenotypic analyses of the novel strains, the name Brooklawnia propionicigenes sp. nov. is proposed to accommodate the four strains. The type strain of the novel species is SH051T (=NBRC 116195T=DSM 116141T).


Subject(s)
Propionates , Propionibacteriaceae , Cattle , Animals , Anaerobiosis , Farms , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria, Anaerobic
2.
Environ Sci Technol ; 58(14): 6296-6304, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38556999

ABSTRACT

Anaerobic digestion (AD) is an important biological resource recovery process, where microorganisms play key roles for material transformation. There has been some knowledge about the prokaryotic community and antibiotic resistance genes (ARGs) in AD, but there has been very limited knowledge of phages. In this study, samples from a full-scale AD plant were collected over 13 months, sequenced, and analyzed for viral and prokaryotic metagenomes. Totally, 3015 viral operational taxonomic units (vOTUs) were detected, mostly assigned to Caudoviricetes. The phage community had faster temporal variation than the prokaryotic community. Warm seasons harbored a higher abundance of both temperate phages and broad host-range phages. Seven ARGs of 6 subtypes were carried by 20 vOTUs, a representative ermT gene was synthesized and expressed, and the resistance activity in the host was examined, confirming the real activity of virus-carried ARGs in the AD process. Some of the ARGs were horizontally transferred between the phage and prokaryotic genomes. However, phage infection was not found to contribute to ARG transfer. This study provided an insight into the ecological patterns of the phage community, confirmed the antibiotic resistance activity of virus-carried ARGs, evaluated the contribution of phages on the ARG prevalence, and laid the foundation for the control strategies of the community and antibiotic resistance in the AD process.


Subject(s)
Bacteriophages , Sewage , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology , Anaerobiosis , Prevalence , Drug Resistance, Microbial/genetics , Genes, Bacterial
3.
Bioresour Technol ; 399: 130647, 2024 May.
Article in English | MEDLINE | ID: mdl-38561152

ABSTRACT

A constructed microbial consortia-based strategy to enhance caproic acid production from one-stage mixed-fermentation of glucose was developed, which incubated with acidogens (Clostridium sensu stricto 1, 11 dominated) and chain elongators (including Clostridium sensu stricto 12, Sporanaerobacter, and Caproiciproducens) acclimated from anaerobic sludge. Significant product upgrading toward caproic acid (8.31 g‧L-1) and improved substrate degradation was achieved, which can be greatly attributed to the lactic acid platform. Whereas, a small amount of caproic acid was observed in the control incubating with acidogens, with an average concentration of 2.09 g‧L-1. The strategy accelerated the shape and cooperation of the specific microbial community dominated by Clostridium sensu stricto and Caproiciproducens, which thereby contributed to caproic acid production via the fatty acid biosynthesis pathway. Moreover, the tailored electrodialysis with bipolar membrane enabled progressive up-concentration and acidification, allowing selective separation of caproic acid as an immiscible product with a purity of 82.58 % from the mixture.


Subject(s)
Caproates , Clostridium , Fermentation , Anaerobiosis , Caproates/metabolism , Clostridium/metabolism , Bioreactors
4.
Article in Russian | MEDLINE | ID: mdl-38639149

ABSTRACT

Several chronic non-communicable diseases are associated with arterial hypertension and are closely related to increased blood pressure. The theory of centralized aerobic-anaerobic energy balance compensation (TCAAEBC) was formulated in connection with the above-mentioned processes. This theory, including the hypothesis of the «egoistic brain¼, is a broader concept. The key point of TCAAEBC is hypoxic anaerobic metabolism, which affects reflex vascular zones, including the neurons of the respiratory and cardiovascular centers of the rhomboid fossa of the medulla oblongata. Hypoxia correction using manual techniques, physical exercises, and other non-pharmaceutical methods under certain conditions can stabilize the level of blood pressure and has a curative effect in the case of arterial hypertension syndrome.


Subject(s)
Hypertension , Humans , Anaerobiosis , Hypertension/therapy , Blood Pressure/physiology , Energy Metabolism , Hypoxia
5.
J Environ Manage ; 357: 120828, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579473

ABSTRACT

Based on the concept of source separation of brown water (BW, human feces with flushing water) and yellow water (urine) in rural area, anaerobic co-digestion of BW with agricultural waste is a promising and effective method for rural waste treatment and resource recovery. The purpose of this study was to investigate the performance of different agricultural wastes (peanut straw (PST), peanut shell (PSH), swine wastewater acting as co-substrate for anaerobic co-digestion with BW, and the relative mechanisms were explored. When the mixed ratio was uniformly set as 1:1 (mass ratio, measured by volatile solid (VS)) and initial VS load as 20 g/L, the maximum cumulative methane production obtained by co-digestion (21 days) of BW and PST was 688 mL/g-VS, which performed better than the individual substrates (341 mL/g-VS), as well as the average of the sole BW and sole PST groups (531.2 mL/g-VS). The most impactful advantage was ascribed to the promotion of hydrolytic and acidogenic enzyme activities. The addition of PST also reduced the production of endogenous humus, which is difficult for biodegradation. Microbial community analysis showed that different co-substrates would affect the microbial community composition in the reactor. The relative abundance of hydrolytic acidogens in the PST and PSH co-digestion groups were higher than that in the SW co-digestion and sole BW groups, and the methanogenic archaea were dominated by the acetate-trophic Methanotrichaceae. The overall results suggest that anaerobic co-digestion is a feasible method, and co-digestion of BW and PST can improve methane production potential.


Subject(s)
Bioreactors , Water , Humans , Animals , Swine , Anaerobiosis , Water/analysis , Feces , Digestion , Methane/analysis
6.
J Environ Manage ; 357: 120843, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588621

ABSTRACT

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Subject(s)
Ferrosoferric Oxide , Nitrites , Nitrites/metabolism , Electron Transport , Anaerobiosis , Methane , Electrons , Denitrification , Oxidation-Reduction , Bacteria/metabolism , Bacteria, Anaerobic/metabolism , Nitrogen/metabolism , Bioreactors/microbiology
7.
Environ Sci Technol ; 58(15): 6659-6669, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38557040

ABSTRACT

Revealing the role of functional redundancy is of great importance considering its key role in maintaining the stability of microbial ecosystems in response to various disturbances. However, experimental evidence on this point is still lacking due to the difficulty in "manipulating" and depicting the degree of redundancy. In this study, manipulative experiments of functional redundancy were conducted by adopting the mixed inoculation strategy to evaluate its role in engineered anaerobic digestion systems under ammonium inhibition conditions. The results indicated that the functional redundancy gradient was successfully constructed and confirmed by evidence from pathway levels. All mixed inoculation groups exhibited higher methane production regardless of the ammonium level, indicating that functional redundancy is crucial in maintaining the system's efficiency. Further analysis of the metagenome-assembled genomes within different functional guilds revealed that the extent of redundancy decreased along the direction of the anaerobic digestion flow, and the role of functional redundancy appeared to be related to the stress level. The study also found that microbial diversity of key functional populations might play a more important role than their abundance on the system's performance under stress. The findings provide direct evidence and highlight the critical role of functional redundancy in enhancing the efficiency and stability of anaerobic digestion.


Subject(s)
Ammonium Compounds , Microbiota , Anaerobiosis , Bioreactors , Metagenome , Methane
8.
Environ Sci Technol ; 58(15): 6670-6681, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38564406

ABSTRACT

The underlying adaptative mechanisms of anammox bacteria to salt stress are still unclear. The potential role of the anammoxosome in modulating material and energy metabolism in response to salinity stress was investigated in this study. The results showed that anammox bacteria increased membrane fluidity and decreased mechanical properties by shortening the ladderane fatty acid chain length of anammoxosome in response to salinity shock, which led to the breakdown of the proton motive force driving ATP synthesis and retarded energy metabolism activity. Afterward, the fatty acid chain length and membrane properties were recovered to enhance the energy metabolic activity. The relative transmission electron microscopy (TEM) area proportion of anammoxosome decreased from 55.9 to 38.9% under salinity stress. The 3D imaging of the anammox bacteria based on Synchrotron soft X-ray tomography showed that the reduction in the relative volume proportion of the anammoxosome and the concave surfaces was induced by salinity stress, which led to the lower energy expenditure of the material transportation and provided more binding sites for enzymes. Therefore, anammox bacteria can modulate nitrogen and energy metabolism by changing the membrane properties and morphology of the anammoxosome in response to salinity stress. This study broadens the response mechanism of anammox bacteria to salinity stress.


Subject(s)
Anaerobic Ammonia Oxidation , Bacteria , Anaerobiosis , Bacteria/metabolism , Fatty Acids/metabolism , Salt Stress , Oxidation-Reduction , Salinity , Nitrogen/metabolism
9.
Microbiome ; 12(1): 68, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570877

ABSTRACT

BACKGROUND: The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8). RESULTS: To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and 13C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated 13C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated 13C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility. CONCLUSION: We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.


Subject(s)
Archaea , Methane , Archaea/genetics , Isotope Labeling , Oxidation-Reduction , Methane/metabolism , Carbon/metabolism , DNA , Anaerobiosis , Geologic Sediments , Phylogeny
10.
Microb Cell Fact ; 23(1): 102, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575972

ABSTRACT

BACKGROUND: Poultry feather waste has a potential for bioenergy production because of its high protein content. This research explored the use of chicken feather hydrolysate for methane and hydrogen production via anaerobic digestion and bioelectrochemical systems, respectively. Solid state fermentation of chicken waste was conducted using a recombinant strain of Bacillus subtilis DB100 (p5.2). RESULTS: In the anaerobic digestion, feather hydrolysate produced maximally 0.67 Nm3 CH4/kg feathers and 0.85 mmol H2/day.L concomitant to COD removal of 86% and 93%, respectively. The bioelectrochemical systems used were microbial fuel and electrolysis cells. In the first using a microbial fuel cell, feather hydrolysate produced electricity with a maximum cell potential of 375 mV and a current of 0.52 mA. In the microbial electrolysis cell, the hydrolysate enhanced the hydrogen production rate to 7.5 mmol/day.L, with a current density of 11.5 A/m2 and a power density of 9.26 W/m2. CONCLUSIONS: The data indicated that the sustainable utilization of keratin hydrolysate to produce electricity and biohydrogen via bioelectrical chemical systems is feasible. Keratin hydrolysate can produce electricity and biofuels through an integrated aerobic-anaerobic fermentation system.


Subject(s)
Chickens , Feathers , Animals , Anaerobiosis , Chickens/metabolism , Hydrogen/metabolism , Keratins/metabolism , Methane/metabolism , Biofuels , Bioreactors
11.
Front Cell Infect Microbiol ; 14: 1287557, 2024.
Article in English | MEDLINE | ID: mdl-38577619

ABSTRACT

Despite extensive knowledge of antibiotic-targeted bacterial cell death, deeper understanding of antibiotic tolerance mechanisms is necessary to combat multi-drug resistance in the global healthcare settings. Regulatory RNAs in bacteria control important cellular processes such as cell division, cellular respiration, metabolism, and virulence. Here, we investigated how exposing Escherichia coli to the moderately effective first-generation antibiotic cephalothin alters transcriptional and post-transcriptional dynamics. Bacteria switched from active aerobic respiration to anaerobic adaptation via an FnrS and Tp2 small RNA-mediated post-transcriptional regulatory circuit. From the early hours of antibiotic exposure, FnrS was involved in regulating reactive oxygen species levels, and delayed oxygen consumption in bacteria. We demonstrated that bacteria strive to maintain cellular homeostasis via sRNA-mediated sudden respiratory changes upon sublethal antibiotic exposure.


Subject(s)
Anti-Bacterial Agents , RNA , Anti-Bacterial Agents/pharmacology , Anaerobiosis , Cell Respiration , Bacteria , Respiration , Gene Expression Regulation, Bacterial
12.
Sci Total Environ ; 927: 172420, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614333

ABSTRACT

This research aims to conduct a comparative investigation of the role played by microaeration and sludge recirculation in the novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) for enhancing pharmaceutical removal from building wastewater. Three AnBB-MBRs - R1: AnBB-MBR, R2: AnBB-MBR with microaeration and R3: AnBB-MBR with microaeration and sludge recirculation - were operated simultaneously to remove Ciprofloxacin (CIP), Caffeine (CAF), Sulfamethoxazole (SMX) and Diclofenac (DCF) from real building wastewater at the hydraulic retention time (HRT) of 30 h for 115 days. From the removal profiles of the targeted pharmaceuticals in the AnBB-MBRs, it was found that the fixed-film compartment (C1) could significantly reduce the targeted pharmaceuticals. The remaining pharmaceuticals were further removed with the microaeration compartment. R2 exhibited the utmost removal efficiency for CIP (78.0 %) and DCF (40.8 %), while SMX was removed most successfully by R3 (microaeration with sludge recirculation) at 91.3 %, followed by microaeration in R2 (88.5 %). For CAF, it was easily removed by all AnBB-MBR systems (>90 %). The removal mechanisms indicate that the microaeration in R2 facilitated the adsorption of CIP onto microaerobic biomass, while the enhanced biodegradation of CAF, SMX and DCF was confirmed by batch biotransformation kinetics and the adsorption isotherms of the targeted pharmaceuticals. The microbial groups involved in biodegradation of the targeted compounds under microaeration were identified as nitrogen removal microbials (Nitrosomonas, Nitrospira, Thiobacillus, and Denitratisoma) and methanotrophs (Methylosarcina, Methylocaldum, and Methylocystis). Overall, explication of the integration of AnBB-MBR with microaeration (R2) confirmed it as a prospective technology for pharmaceutical removal from building wastewater due to its energy-efficient approach characterized by minimal aeration supply.


Subject(s)
Biofilms , Bioreactors , Sewage , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Bioreactors/microbiology , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Sewage/microbiology , Anaerobiosis , Microbiota , Pharmaceutical Preparations/metabolism , Sulfamethoxazole
13.
Sci Total Environ ; 927: 172442, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614336

ABSTRACT

The Partial Denitrification-Anammox (PD/A) process established a low-consumption, efficient and sustainable pathway for complete nitrogen removal, which is of great interest to the industry. Rapid initiation and stable operation of the PD/A systems were the main issues limiting its engineering application in wastewater nitrogen removal. A PD/A system was initiated in a continuous stirred-tank reactors (CSTRs) in the presence of low concentration of organic matter, and the effects of organic matter types and COD/NO3--N ratios on the performance of the PD/A system, and microbial community characteristics were explored. The results showed that low concentrations of organic matter could promote the rapid initiation of the Anammox process and then the strategy of gradually replacing NO2--N with NO3--N could successfully initiate the PD/A system at 70 days. The type of organic matter had a significant effect on the initiation of the Anammox and the establishment of the PD/A system. Compared to glucose, sodium acetate was more favorable for rapid start-up and the synergy among microorganisms, and organic matter was lower, with an optimal COD/NO3--N ratio of 3.0. Microorganisms differed in their sensitivity to environmental factors. The relative abundance of Planctomycetota and Proteobacteria in R2 was 51 %, with the presence of three typical anammox bacteria, Candidatus_Brocadia, Candidatus_Kuenenia, and Candidatus_Jettenia in the system. This study provides a new strategy for the rapid initiation and stable operation of the PD/A process.


Subject(s)
Bioreactors , Denitrification , Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Wastewater/chemistry , Nitrogen , Anaerobiosis , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
14.
J Hazard Mater ; 470: 134135, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574656

ABSTRACT

Sb(III) and As(III) share similar chemical features and coexist in the environment. However, their oxidase enzymes have completely different sequences and structures. This raises an intriguing question: Could Sb(III)-oxidizing prokaryotes (SOPs) also oxidize As(III), and vice versa? Regarding this issue, previous investigations have yielded unclear, incorrect and even conflicting data. This work aims to address this matter. First, we prepared an enriched population of SOPs that comprises 55 different AnoA genes, lacking AioAB and ArxAB genes. We found that these SOPs can oxidize both Sb(III) and As(III) with comparable capabilities. To further confirm this finding, we isolated three cultivable SOP strains that have AnoA gene, but lack AioAB and ArxAB genes. We observed that they also oxidize both Sb(III) and As(III) under both anaerobic and aerobic conditions. Secondly, we obtained an enriched population of As(III)-oxidizing prokaryotes (AOPs) from As-contaminated soils, which comprises 69 different AioA genes, lacking AnoA gene. We observed that the AOP population has significant As(III)-oxidizing activities, but lack detectable Sb(III)-oxidizing activities under both aerobic and anaerobic conditions. Therefore, we convincingly show that SOPs can oxidize As(III), but AOPs cannot oxidize Sb(III). These findings clarify the previous ambiguities, confusion, errors or contradictions regarding how SOPs and AOPs oxidize each other's substrate.


Subject(s)
Antimony , Oxidation-Reduction , Anaerobiosis , Aerobiosis , Antimony/metabolism , Prokaryotic Cells/metabolism , Soil Microbiology , Bacteria/metabolism , Bacteria/genetics , Soil Pollutants/metabolism
15.
Sci Total Environ ; 927: 171982, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575013

ABSTRACT

In this research, we developed a biochar-based fertilizer using biogas slurry and biochar derived from lignocellulosic agro-residues. Biogas slurry was obtained through the anaerobic digestion of the organic fraction of municipal solid waste (fresh vegetable biomass and/or prepared food), while biochars were derived from residues from quinoa, maize, rice, and sugarcane. The biochar-based fertilizers were prepared using an impregnation process, where the biogas slurry was mixed with each of the raw biochars. Subsequently, we characterized the N, P and K concentrations of the obtained biochar-based fertilizers. Additionally, we analyzed their surface properties using SEM/EDS and FTIR and conducted a slow-release test on these biochar-based fertilizers to assess their capability to gradually release nutrients. Lastly, a bioassay using cucumber plants was conducted to determine the N, P, and K bioavailability. Our findings revealed a significant correlation (r > 0.67) between the atomic O/C ratio, H/C ratio, cation exchange capacity, surface area, and the base cations concentration with N, P, and/or K adsorption on biochar. These properties, in turn, were linked to the capability of the biochar-based fertilizer to release nutrients in a controlled manner. The biochar-based fertilizer derived from corn residues showed <15 % release of N, P and K at 24 h. Utilization of these biochar-based fertilizers had a positive impact on the mineral nutrition of cucumber plants, resulting in an average increase of 61 % in N, 32 % in P, and 19 % in K concentrations. Our results underscore the potential of biochar-based fertilizers in controlled nutrient release and enhanced plant nutrition. Integration of biochar and biogas slurry offers a promising and sustainable approach for NPK recovery and fertilizer production in agriculture. This study presents an innovative and sustainable approach combining the use of biochar for NPK recovery from biogas slurry and its use as a biochar-based fertilizer in agriculture.


Subject(s)
Charcoal , Fertilizers , Fertilizers/analysis , Charcoal/chemistry , Anaerobiosis , Agriculture/methods , Nitrogen/analysis , Potassium/analysis , Phosphorus/analysis , Biofuels
16.
Sci Total Environ ; 927: 172113, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38580110

ABSTRACT

Antimony (Sb) and sulfate are two common pollutants in Sb mine drainage and Sb-containing textile wastewater. In this paper, it was found that iron­carbon (Fe/C) enhanced Sb(V) removal from sulfate-rich wastewater by anaerobic granular sludge (AnGS). Sulfate inhibited Sb(V) removal (S + Sb, k = 0.101), while Fe/C alleviated the inhibition and increased Sb(V) removal rate by 2.3 times (Fe/C + S + Sb, k = 0.236). Fe/C could promote the removal of Sb(III), and Sb(III) content decreased significantly after 8 h. Meanwhile, Fe/C enhanced the removal of sulfate. The 3D-EEM spectrum of supernatant in Fe/C + S + Sb group (at 24 h) showed that Fe/C stimulated the production of soluble microbial products (SMP) in wastewater. SMP alleviated the inhibition of sulfate, promoting AnGS to reduce Sb(V). Sb(V) could be reduced to Sb(III) both by AnGS and sulfides produced from sulfate reduction. Further analysis of extracellular polymeric substances (EPS) and AnGS showed that Fe/C increased the adsorbed Sb(V) in EPS and the c-type cytochrome content in AnGS, which may be beneficial for Sb(V) removal. Sb(V) reduction in Fe/C + S + Sb group may be related to the genus Acinetobacter, while in Sb group, several bacteria may be involved in Sb(V) reduction, such as Acinetobacter, Pseudomonas and Corynebacterium. This study provided insights into Fe/C-enhanced Sb(V) removal from sulfate-rich wastewater.


Subject(s)
Antimony , Iron , Sewage , Sulfates , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Antimony/analysis , Anaerobiosis , Carbon
17.
Environ Sci Technol ; 58(15): 6637-6646, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38580315

ABSTRACT

Methanogenesis is a critical process in the carbon cycle that is applied industrially in anaerobic digestion and biogas production. While naturally occurring in diverse environments, methanogenesis requires anaerobic and reduced conditions, although varying degrees of oxygen tolerance have been described. Microaeration is suggested as the next step to increase methane production and improve hydrolysis in digestion processes; therefore, a deeper understanding of the methanogenic response to oxygen stress is needed. To explore the drivers of oxygen tolerance in methanogenesis, two parallel enrichments were performed under the addition of H2/CO2 in an environment without reducing agents and in a redox-buffered environment by adding redox mediator 9,10-anthraquinone-2,7-disulfonate disodium. The cellular response to oxidative conditions is mapped using proteomic analysis. The resulting community showed remarkable tolerance to high-redox environments and was unperturbed in its methane production. Next to the expression of pathways to mitigate reactive oxygen species, the higher redox potential environment showed an increased presence of selenocysteine and selenium-associated pathways. By including sulfur-to-selenium mass shifts in a proteomic database search, we provide the first evidence of the dynamic and large-scale incorporation of selenocysteine as a response to oxidative stress in hydrogenotrophic methanogenesis and the presence of a dynamic selenoproteome.


Subject(s)
Euryarchaeota , Selenium , Methane , Proteomics , Selenocysteine/metabolism , Euryarchaeota/metabolism , Oxidative Stress , Oxygen , Anaerobiosis , Bioreactors
18.
J Hazard Mater ; 470: 134217, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583197

ABSTRACT

Tetrabromobisphenol A (TBBPA), a common brominated flame retardant and a notorious pollutant in anaerobic environments, resists aerobic degradation but can undergo reductive dehalogenation to produce bisphenol A (BPA), an endocrine disruptor. Conversely, BPA is resistant to anaerobic biodegradation but susceptible to aerobic degradation. Microbial degradation of TBBPA via anoxic/oxic processes is scarcely documented. We established an anaerobic microcosm for TBBPA dehalogenation to BPA facilitated by humin. Dehalobacter species increased with a growth yield of 1.5 × 108 cells per µmol Br- released, suggesting their role in TBBPA dehalogenation. We innovatively achieved complete and sustainable biodegradation of TBBPA in sand/soil columns columns, synergizing TBBPA reductive dehalogenation by anaerobic functional microbiota and BPA aerobic oxidation by Sphingomonas sp. strain TTNP3. Over 42 days, 95.11 % of the injected TBBPA in three batches was debrominated to BPA. Following injection of strain TTNP3 cells, 85.57 % of BPA was aerobically degraded. Aerobic BPA degradation column experiments also indicated that aeration and cell colonization significantly increased degradation rates. This treatment strategy provides valuable technical insights for complete TBBPA biodegradation and analogous contaminants.


Subject(s)
Biodegradation, Environmental , Flame Retardants , Oxidation-Reduction , Phenols , Polybrominated Biphenyls , Polybrominated Biphenyls/metabolism , Polybrominated Biphenyls/chemistry , Anaerobiosis , Aerobiosis , Phenols/metabolism , Flame Retardants/metabolism , Benzhydryl Compounds/metabolism , Sphingomonas/metabolism , Halogenation , Soil Pollutants/metabolism
19.
Sci Total Environ ; 927: 172256, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583613

ABSTRACT

The vertical distribution of 35 volatile organic compounds (VOCs) was investigated in soil columns from two obsolete industrial sites in Eastern China. The total concentrations of ΣVOCs in surface soils (0-20 cm) were 134-1664 ng g-1. Contamination of VOCs in surface soil exhibited remarkable variability, closely related to previous production activities at the sampling sites. Additionally, the concentrations of ΣVOCs varied with increasing soil depth from 0 to 10 m. Soils at depth of 2 m showed ΣVOCs concentrations of 127-47,389 ng g-1. Among the studied VOCs, xylene was the predominant contaminant in subsoils (2 m), with concentrations ranging from n.d. to 45,400 ng g-1. Chlorinated alkanes and olefins demonstrated a greater downward migration ability compared to monoaromatic hydrocarbons, likely due to their lower hydrophobicity. As a result, this vertical distribution of VOCs led to a high ecological risk in both the surface and deep soil. Notably, the risk quotient (RQ) of xylene in subsoil (2 m, RQ up to 319) was much higher than that in surface soil. Furthermore, distinct effects of VOCs on soil microbes were observed under aerobic and anaerobic conditions. Specifically, after the 30-d incubation of xylene-contaminated soil, Ilumatobacter was enriched under aerobic condition, whereas Anaerolineaceae was enriched under anaerobic condition. Moreover, xylene contamination significantly affected methylotrophy and methanol oxidation functions for aerobic soil (t-test, p < 0.05). However, aromatic compound degradation and ammonification were significantly enhanced by xylene in anaerobic soil (t-test, p < 0.05). These findings suggest that specific VOC compound has distinct microbial ecological effects under different oxygen content conditions in soil. Therefore, when conducting soil risk assessments of VOCs, it is crucial to consider their ecological effects at different soil depths.


Subject(s)
Environmental Monitoring , Soil Microbiology , Soil Pollutants , Soil , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Soil Pollutants/analysis , China , Anaerobiosis , Soil/chemistry , Aerobiosis
20.
Sci Total Environ ; 927: 172291, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38588748

ABSTRACT

Biochar is commonly used to enhance the anaerobic digestion of organic waste solids and wastewater, due to its electrochemical properties, which intensify the electron transfer of microorganisms attached to its large surface area. However, it is difficult to create biochar with both high conductivity and high capacitance, which makes selecting the right biochar for engineering applications challenging. To address this issue, two Auto algorithms (TPOT and H2O) were applied to model the effects of different biochar properties on anaerobic digestion processes. The results showed that the gradient boosting machine had the highest predictive accuracy (R2 = 0.96). Feature importance analysis showed that feedstock concentration, digestion time, capacitance, and conductivity of biochar were the main factors affecting methane yield. According to the two-dimensional (2D) partial dependence plots, high-capacitance biochar (0.27-0.29 V·mA) is favorable for substrates with low-solid content (< 19.6 TS%), while the high-conductivity biochar (80.82-170.58 mS/cm) is suitable for high-solids substrates (> 20.1 TS%). The software, based on the optimal model, can be used to obtain the ideal range of biochar for AD trials, aiding researchers in practical applications prior to implementation.


Subject(s)
Charcoal , Machine Learning , Charcoal/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL
...